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Preliminary Axioms Comparison

Continuity

(∀ε > 0) (∃δ > 0) (∀x) |x − a| ≤ δ ⇒ |f (x)− f (a)| ≤ ε

For too complicated to be used at introductory pre-university level.

Choice (in high school):

lose rigour

change paradigm ←− why we are together
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Preliminary Axioms Comparison

intuition of �tiny�

The interval [0, 1] contains in�nitely many real numbers.

Some of them must be really very close

their di�erence must be really tiny

0 1

δ

0 δ

ε

Formalisation:
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Preliminary Axioms Comparison

Axioms: standard observability

(1) Real numbers which can be uniquely de�ned, or completely

written out, are standard:

0, 1,
√
2, e, π

(2) Operations between standard numbers yield standard results.

(3) There exist real numbers smaller in absolute value than any

strictly positive standard real number. These are ultrasmall

(and not standard).1

(4) Every real number x which is not ultralarge can be written as

x = a + δ, where a is standard and δ is ultrasmall or zero.

We write

x ' a

1the reciprocal of ultrasmall is ultralarge
5 / 27
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Preliminary Axioms Comparison

Axioms: generalisation

De�nition (context)

The context of a statement, function or set, is the list of

parameters used in its de�nition.

(A context may be empty)

Observability is relative to a context.

If a number is observable relative to a context, it is observable

relative to any extended context.

Standard numbers are observable relative to the empty context, or

relative to every context.

Every number is observable in some context.
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Preliminary Axioms Comparison

(2') (Closure) If there is a real number satisfying a given property,

then there is an observable real number satisfying that

property.

Implies: Operations between observable real numbers yield

observable results.

(2') ⇒ (2)

(3') Given any context, there exist ultrasmall real numbers

(3') ⇒ (3)

(4') Every real number x which is not ultralarge can be written as

x = a + δ, where a is observable and δ is ultrasmall or zero.

(4') ⇒ (4)
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Preliminary Axioms Comparison

Working with explicit functions, one notices by inspection, that

adding parameters to the context does not change the result.

Generalisation:

(5) A property is true i� it is true when its context is extended.

Do not worry about the context provided it contains at least all

parameters involved.

8 / 27



Preliminary Axioms Comparison

Working with explicit functions, one notices by inspection, that

adding parameters to the context does not change the result.

Generalisation:

(5) A property is true i� it is true when its context is extended.

Do not worry about the context provided it contains at least all

parameters involved.

8 / 27



Preliminary Axioms Comparison

Working with explicit functions, one notices by inspection, that

adding parameters to the context does not change the result.

Generalisation:

(5) A property is true i� it is true when its context is extended.

Do not worry about the context provided it contains at least all

parameters involved.

8 / 27



Preliminary Axioms Comparison

Case 1

Lucien H.

Because

y ′ =
dy

dx
and y ′ · dx = dy

di�erential equations are easier to understand and there is no

cheating.

Most theorems are easier to understand, easier and shorter to

prove (no weird behaviour �at the limit�)

But: the one about Cauchy sequences is so simple, something

must be wrong...
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Preliminary Axioms Comparison

Case 1

De�nition (Convergence)

A sequence {an} converges to a limit if there is an observable value

L such that for any ultralarge index N, we have

aN ' L

De�nition (Cauchy sequence)

A sequence is a Cauchy sequence if for any two ultralarge indexes

N, M, we have

aN ' aM

Theorem

A sequence converges to a limit i� it is a Cauchy sequence.
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Preliminary Axioms Comparison

Case 1

Proof

⇒ (easy)

for any ultralarge indexes N and M,

aN ' L and aM ' L so aN ' aM

⇐
Assume N is a �xed ultralarge index, and M is any ultralarge index.

Then aN ' aM ,

so there is a value ` such that for any ultralarge index M, we have

aM ' `.
By closure there is an observable such value and this is the limit L.
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Preliminary Axioms Comparison

Case 1

Lucien's comment

This seems to use another �nature� of real numbers.

what is the real nature of real numbers?

Metaphysical question?
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Preliminary Axioms Comparison

Case 1

Referees' comments

1 real numbers are not really like that

2 but we all know that in�nitesimals don't really exist

3 I will believe you when you can show me an in�nitesimal

4 we don't want analysis to be taught that way
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Preliminary Axioms Comparison

Case 1

Time to cease to be polite

Foundational incompetence and religious belief in a metaphysical

truth about real numbers are not acceptable in a scienti�c

discussion.
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Preliminary Axioms Comparison

Case 1

Valid questions

1 Is it mathematically useful?

2 Is it pedagogically useful?

15 / 27



Preliminary Axioms Comparison

Case 1

1 Is it mathematically useful?

Consider

H : x 7→ 1

2
+

1

π
arctan

(x
ε

)
for ultrasmall positive ε

At standard scale: Heaviside function. Its derivative � at

standard scale � is a Dirac. And they can be multiplied!2

2the product is a lopsided Dirac...
16 / 27



Preliminary Axioms Comparison

Case 2

2 Is it pedagogically useful?

Final exams have an external jury, from university.

Jury was Prof. Laura Weiss, professor of didactics of mathematics

and physics who was also jury for other teachers.

17 / 27
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Preliminary Axioms Comparison

Case 2

Continuity of y = x
2

Is f : x 7→ x2 continuous at x = 3?

Ultracalculus: yes because, for h ' 0 we have

(3 + h)2 = 9 + 6h + h2

6h ' 0 because 6 is observable and h is ultrasmall, and observable

times ultrasmall is ultrasmall (proof available).

Same for h2:

hence 9 + 6h + h2 ' 9 = 32.
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Preliminary Axioms Comparison

Case 2

classical approach

Yes, because

lim
x→3

x2 = 32

(with no extra comment...)

or

lim
h→0

(3 + h)2 = 32 + 6h + h2 = 32 + lim
h→0

6h + lim
h→0

h2 = 32

notice the absence of �lim� at second step.

�The lim notation seems used as a pre�x, with no clear meaning.�
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Preliminary Axioms Comparison

Case 2

continuity of the product

Ultracalculus

x ' a⇒ x = a + dx

f (a + dx)− f (a) = ∆f (a) ' 0 if f is continuous at a

hence

f (a + dx) · g(a + dx) = (f (a) + ∆f (a)) · (g(a) + ∆g(a))

= f (a) · g(a) + f (a) ·∆g(a)︸ ︷︷ ︸
'0

+ ∆f (a) · g(a)︸ ︷︷ ︸
'0

+ ∆f (a) ·∆g(a)︸ ︷︷ ︸
'0

' f (a) · g(a)

20 / 27



Preliminary Axioms Comparison

Case 2

continuity of the product

Ultracalculus

x ' a⇒ x = a + dx

f (a + dx)− f (a) = ∆f (a) ' 0 if f is continuous at a

hence

f (a + dx) · g(a + dx) = (f (a) + ∆f (a)) · (g(a) + ∆g(a))

= f (a) · g(a) + f (a) ·∆g(a)︸ ︷︷ ︸
'0

+ ∆f (a) · g(a)︸ ︷︷ ︸
'0

+ ∆f (a) ·∆g(a)︸ ︷︷ ︸
'0

' f (a) · g(a)

20 / 27



Preliminary Axioms Comparison

Case 2

continuity of the product

Ultracalculus

x ' a⇒ x = a + dx

f (a + dx)− f (a) = ∆f (a) ' 0 if f is continuous at a

hence

f (a + dx) · g(a + dx) = (f (a) + ∆f (a)) · (g(a) + ∆g(a))

= f (a) · g(a) + f (a) ·∆g(a)︸ ︷︷ ︸
'0

+ ∆f (a) · g(a)︸ ︷︷ ︸
'0

+ ∆f (a) ·∆g(a)︸ ︷︷ ︸
'0

' f (a) · g(a)

20 / 27



Preliminary Axioms Comparison

Case 2

classical approach

lim
x→a

f (x) · g(x) = f (a) · g(a)

why?

because the limit can be distributed...

but then for the derivative of the product?

It is another problem so it has another rule.

21 / 27
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Preliminary Axioms Comparison

Case 2

variable substitution

Ultracalculus

a a + dx

f (a)

f (a) + f ′(a) · dx

dx

∆f (a)

f (a + dx)

df (a) = f ′(a) · dx (the variation along the tangent)

22 / 27



Preliminary Axioms Comparison

Case 2

∫ 1

0

√
1 + 2x · dx

then for
√
1 + 2x = u we have

du

dx
=

1√
1 + 2x

=
1

u
hence u · du = dx

then: √
1 + 2x · dx = u2 · du

if x = 0 then u = 1; if x = 1 then u =
√
3

All together ∫ √
3

1
u2 · du

a step by step method
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Preliminary Axioms Comparison

Case 2

classical approach

Need to prove, using the fundamental theorem twice, that∫
b

a

f (x)dx =

∫ ϕ−1(b)

ϕ−1(a)
f (ϕ(t))ϕ′(t)dt

and use it in one step.
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Preliminary Axioms Comparison

Case 2

Laura Weiss's comment

In the classical approach, the technicality is either so high that

there is no energy left for understanding, or everything is

hidden under the carpet, but then proofs are mere metaphors.

Students working with ultracalculus have better and safer

tools.

Because they can rely on algebra, when they are lost or in

error, students working with ultracalculus can use a hint much

more e�ciently.
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Preliminary Axioms Comparison

Case 2

Laura Weiss's comment

�Descartes made geometry algebraic and that was a great

improvement.

Analysis with ultrasmall numbers make analysis more algebraic and

it seems to provide the same sort of advantage.�
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Preliminary Axioms Comparison

Case 2

Thank you

27 / 27
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